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Abstract A phenomenological (mean-field) mathematical model of unimolecular
reactions proceeding onto inhomogeneous planar surfaces is presented and investi-
gated numerically in two-dimensional in space case taking into account the adsorp-
tion and desorption of reactant particles, long-range surface diffusion of the adsorbed
particles, and an instantaneous product desorption from an adsorbent. The model also
involves the bulk diffusion of the reactant from the bounded vessel towards the adsor-
bent and the product bulk one from the adsorbent into the same vessel. Simulations
were performed using the finite difference technique. The influence of the long-range
surface diffusion of adsorbed particles on the kinetics for processes catalyzed by
inhomogeneous surfaces with a different arrangement of reactive and non-reactive
adsorption sites is studied.

Keywords Heterogeneous reactions · Adsorption · Desorption · Surface diffusion

1 Introduction

Diffusion of adsorbed particles (atoms, molecules, or small clusters) on solid sur-
faces occurs in a number of modern technologies involving crystal and film growth,
catalysis, and surface-bound nanostructures by variety of mechanisms [1,2]. Usu-
ally it is assumed that surface diffusion of adsorbed particles occurs via their
jumps to nearest-neighbor vacant sites [3]. If, however, the energy-exchange between
adsorbed particles and substrate is slow and corrugation of the adsorption poten-
tial is weak or if the temperature is sufficiently high, the long-range jumps may
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be significant as well [4–6]. The experiments [6–9] have led to observation that
long-range jumps of adsorbed particles may, upon occasion, play a dominant role.
Theoretically, by using the Langevin equation with thermal noise, the contribution of
long-range jumps of a single particle to diffusion coefficient was discussed in papers
[1,10–13].

In most of the former studies of heterogeneous reactions, surface diffusion of the
adsorbate was either neglected or considered as a rapid process (see [14] and references
therein). In recent works concerning heterogeneous catalytic reactions occurring on
nanostructured surfaces the diffusion of adsorbed particles is taken into account and
Monte Carlo simulations technique [14–18] or mean-field modeling [14,16,19–21]
are employed. However, these last four works were dealing only with uniform sur-
faces [14,16], while in [14] two mean-field models of the kinetics of unimolecular
and bimolecular catalytic reactions occurring on heterogeneous surfaces involving a
local arrangement of reactive and non-reactive surface sites are studied. Derivation
and the structure of these models [22] show that they are based on the particles jumps
to nearest-neighbor vacant sites.

We consider unimolecular surface reactions coupled with the reactant and product
bulk diffusion and present a phenomenological (mean-field) model taking into account
the long-range diffusion (all possible jumps lengths) of adsorbed particles on a spatially
inhomogeneous planar surfaces that involve a heterogeneous or non-uniform homoge-
neous arrangement of reactive and non-reactive surface sites. Adsorption, desorption,
and diffusion are allowed to proceed at each site while reaction only on the reac-
tive ones. We also study the bulk diffusion of the reactant towards the surface and
the bulk one of the product from the adsorbent letting the product desorption from
the surface to be instantaneous and all processes to proceed at a constant tempera-
ture.

The paper is organized as follows. In Sect. 2, the model is presented. In Sect. 3 we
discuss numerical results. Some remarks in Sect. 4 conclude the paper.

2 The model

Let reactant A and product B of concentrations a(t, x) and b(t, x) occupy a bounded
domain Ω with surface ∂Ω = S1 ∪ S2. Here t is time, x ∈ Ω is a position, S2 is a sur-
face of the adsorbent, S1 = ∂Ω\S2 is impermeable surface to the reactant and product.
Let s2(x) and s1(x), x ∈ S2, be the surface density of active and inactive adsorption
sites in the surface reaction. Assume that s2θ2 and s1θ1, θi (t, x) ∈ [0, 1], i = 1, 2, are
densities of active and inactive sites occupied by the reactant molecules. Let Pi j (x, y)

be the rate by which the reactant particle adsorbed on a site of type j located in position
y ∈ S2 diffuses (jumps) to a vacant site of type i located in position x ∈ S2. Also
assume that k is a constant of the reaction rate and k f 1, k f 2, kr1, kr2 are the adsorp-
tion and desorption rate constants. Denoting by κa and κb diffusivities of reactant
a and product b and using the law of mass action and the Langmuir mechanism of
unimolecular reactions we derive the following coupled system for surface coverages,
θ1 and θ2:
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∂θ1

∂t
= (1 − θ1(t, x))

{
k f 1a + ∫

S2

(
θ1(t, y)s1(y)P11(x, y)

+ θ2(t, y)s2(y)P12(x, y)
)

dy
}

− θ1(t, x)
{

kr1 + ∫

S2

(
(1 − θ1(t, y))s1(y)P11(y, x)

+ (1 − θ2(t, y))s2(y)P21(y, x)
)

dy
}
, t > 0, x ∈ S2,

θ1|t=0 = 0, x ∈ S2,

∂θ2

∂t
= (1 − θ2(t, x))

{
k f 2a + ∫

S2

(
s1(y)θ1(t, y)P21(x, y)

+ s2(y)θ2(t, y)P22(x, y)
)

dy
}

− θ2(t, x)
{

kr2 + k + ∫

S2

(
(1 − θ1(t, y))s1(y)P12(y, x)

+ (1 − θ2(t, y))s2(y)P22(y, x)
)

dy
}
, t > 0, x ∈ S2,

θ2|t=0 = 0, x ∈ S2.

(1)

Here a = a(t, x) is an unknown reactant concentration at S2. The first integral gain
term on the right-hand side of the first equation of this system is conditioned by the
surface diffusion (jumps) of the adsorbed reactant particles from the inactive and active
sites located on surface S2 to the vacant inactive sites located in the position x ∈ S2.
The lost integral term of the first equation is conditioned by the surface diffusion
(jumps) of the adsorbed reactant particles from the inactive sites located in position
x ∈ S2 to vacant inactive and active sites located on S2. Similarly can be explained
the rise of the integral gain and lost terms of the second equation of this system. To
close this system we add equations describing the bulk diffusion of reactant a and
product b,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
= κaΔa, x ∈ Ω, t > 0,

∂na|S1 = 0, t > 0,

κa∂na|S2 = −k f 1s1(1 − θ1)a|S2 + kr1s1θ1

− k f 2s2(1 − θ2)a|S2 + kr2s2θ2, t > 0,

a|t=0 = a0(x), x ∈ Ω,

(2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂b

∂t
= κbΔb, x ∈ Ω, t > 0,

∂nb|S1 = 0, t > 0,

κb∂nb|S2 = ks2θ2, t > 0,

b|t=0 = 0, x ∈ Ω.

(3)

Here Δ is the Laplace operator, ∂na and ∂nb are the outward normal derivatives, and
a0 is an initial distribution of the reactant concentration. A system based on the Fick
law is proposed in [23] for the description of unimolecular surface reactions coupled
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with the bulk diffusion of the reactant and product and surface diffusion of the reac-
tant particles adsorbed on a surface with all sites of reactive type. However, the model
considered in [23] cannot describe the long-range surface diffusion.

It is easy to prove that system (1)–(3) possesses the mass conservation law

∫

Ω

(a + b) dx +
∫

S2

(s1θ1 + s2θ2) dx =
∫

Ω

a0 dx. (4)

We determine the specific conversion rate of the reactant molecules (turn-over rate)
by the formula

z(t) = k
∫

S2

s2(x)θ2(t, x) dx

/∫

S2

s2(x) dx. (5)

In the case where Pi j (x, y) = κi j (x, y)δ(x − y), x /∈ ∂S2, with δ(x − y) the Dirac
delta function, Eq. (1) reduce to the system of ODEs,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ1

dt
= (1 − θ1)

{
k f 1a + s2κ12(x, x)θ2

}

− θ1
{
kr1 + s2(1 − θ2)κ21(x, x)

}
, θ1|t=0 = 0,

dθ2

dt
= (1 − θ2)

{
k f 2a + s1κ21(x, x)θ1

}

− θ2
{
kr2 + k + s1(1 − θ1)κ12(x, x)

}
, θ2|t=0 = 0,

(6)

that, for fixed x ∈ S2, are the same as those used in [22]. We stress that x involved in
Eq. (6) is a parameter. Equation (6) show that, in the case where αi j → 0, parameters
κ11 and κ22 do not influence evolution of θ1 and θ2.

3 Numerical results

We consider system (1)–(3) in domain Ω = {(x1, x2, x3) : xi ∈ [0, l], i = 1, 2, 3}
with S2 = {(x1, x2) : xi ∈ [0, l], i = 1, 2}. To simplify the three-dimensional problem
we study the case where the initial distribution of reactant a0 is a constant and densities
s1 and s2 depend only on x1. We also take into account jumps of adsorbed particles
only in x1 direction. In this case surface integrals involved in Eq. (1) reduce to integrals
over [0, l] multiplied by l. Therefore, in what follows we consider Eqs. (2) and (3) in
Ω̃ = {(x1, x2) : xi ∈ [0, l], i = 1, 2} with S̃2 = {(x1, x2) : x2 = 0, x1 ∈ [0, l]}. For
numerical calculations we apply function

Pi j (x, y) = κi j√
παi j

exp

{−|x − y|2
αi j

}

(7)

where αi j/2, i, j = 1, 2, are the dispersions of jumps lengths of adsorbed particles,
κi j is their surface diffusion (jumps) rate constants, and |x − y| with x, y ∈ [0, 1] is
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Fig. 1 Effect of parameters
κi j , i, j = 1, 2, on steady-state
surface coverages determined by
(1) with densities a(t, x1) = 1,

s1(x1) = x1 and s2(x1) = 1−x1
in the case where k = 3 × 10−2

and α = 0.02
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a jump length from point y to x . It is evident that

lim
αi j →0

exp{−|x − y|2/αi j }√
παi j

= δ(x − y).

Using the dimensionless variables t̄ = t/T, x̄1 = x1/ l, x̄2 = x2/ l, x̄3 = x3/ l, ā =
a/a∗, b̄ = b/a∗, s̄1 = s1/ la∗, s̄2 = s2/ la∗, k̄ f 1 = k f 1T a∗, k̄ f 2 = k f 2T a∗,
k̄r1 = kr1T, k̄r2 = kr2T, k̄ = kT, κ̄a = κaT/ l2, κ̄b = κbT/ l2, κ̄i j =
κi j T l2a∗, ᾱi j = αi j/ l2, where T, l, and a∗ are characteristic dimensional units, we
rewrite Eqs. (1)–(7) in the same form but in dimensionless variables. Dimensionless
Eqs. (1), (4), (5) involve integration over interval [0, 1]. For simplicity in what follows,
we omit the bar and treat Eqs. (1)–(7) as dimensionless. To solve numerically problem
(1) with given a(t, x1, 0) Euler’s scheme with integrals approximated by trapezoidal
quadrature formula was used. The same result was got by applying the Runge–Kutta
method. We solved problem (1)–(3) by using implicit finite-difference schemes based
on the alternating direction method [24]. As in [23], for all calculations we used the
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Fig. 2 Effect of parameters
κi j , i, j = 1, 2, on conversion
rate of the reactant molecules
z(t) determined by (1) and (5)
with densities a(t, x1) = 1,

s1(x1) = x1 and s2(x1) = 1 − x1
in the case where α = 0.02 and
a k = 3 × 10−3,
b k = 3 × 10−2
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following dimensional data:

T = 1 s, l = 10−1 cm, a∗ = 10−11 mol cm−3,

s∗ = la∗ = 10−12 mol cm−3, k f 1, k f 2 ∈ [109, 1011] cm3 mol−1 s−1,

kr1, kr2, k ∈ [3 · 10−3, 1] s−1, κa, κb ∈ [5 · 10−7, 10−3] cm2 s−1. (8)

The model values of dimensionless κi j are given in the captions of figures. All figures
are drawn for k f 1 = k f 2 = 0.01661 and kr1 = kr2 = 0.001. In what follows, we
study the long-range surface diffusion influence on the kinetics of catalytic process of
surfaces with active and inactive in reaction sites arrangement. This influence can be
illustrated by varying parameters κi j and αi j .

We first discuss the case of long-range surface diffusion where the bulk diffusion
of the reactant is neglected, i.e. we study system (1) with a given value of the reactant
concentration, a = 1, at the adsorbent x2 = 0.

In the case where all αi j and κi j are equal we use α = αi j and κ = κi j

i, j = 1, 2, for short.
1. Numerical results of system (1) with a given a. We consider a non-uniform homo-

geneous (every point of [0, 1] contains active and inactive sites) and heterogeneous
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Fig. 3 Effect of parameters
αi j , i, j = 1, 2, on conversion
rate of the reactant molecules
z(t) determined by (1) and (5)
with densities a(t, x1) = 1,

s1(x1) = x1 and
s2(x1) = 1 − x1 in the case
where k = 3 × 10−2 and κ = 1
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(active and inactive sites are distributed in domains alternatively) distributions of active
and inactive sites. Size of sites is neglected.

1.1. The case of non-uniform homogeneous distribution of adsorption sites. Let
s1(x1) = x1 and s2(x1) = 1 − x1. Note that

∫ 1
0 s1(x) dx = ∫ 1

0 s2(x) dx = 1/2.
Numerical results illustrated on Figs. 1, 2, 5, 6 and 3, 4 depict the steady-state values
of θ1(x1), θ2(x1) and dynamics of z, respectively. Numerical experiments show that
for values of κ12 = κ21 and α from a broad intervals and small reaction rate constant
(k = 3 · 10−3), parameters κ11 and κ22 influence the behavior of θ1 and θ2 weakly.
A small their influence is observed in the regions near ends of interval [0, 1]. But it
vanishes and results tend to solution of system (6) as αi j → 0. This result is strong
because Pi j (x, y) → κi jδ(x − y) as αi j → 0. If αi j are far from zero, from Fig. 1 we
observe that this influence significantly grows as k increases. This figure also dem-
onstrates an influence of the increase of parameter κ on the values of θ1 and θ2. We
observe that θ1 and θ2 tend to values independent of position x1 as κ grows. In this
case we have a long-range diffusion effect.

If only κ21 increases (or κ12 decreases) then θ1 decreases and θ2 increases (results
not presented here). This effect can be also seen from Eq. (6).

Figure 2a depicts a growth of the turn-over rate z(t) as parameter κ21 increases or
κ12 decreases in the case where k = 3 × 10−3 and α = 0.02.
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Fig. 4 Comparison of the
steady-state surface coverages
determined by (1) with densities
a(t, x1) = 1, s1(x1) = x1 and
s2(x1) = 1 − x1 on parameters
αi j , i, j = 1, 2, in the case

where k = 3 × 10−2 and κ = 1
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Figure 2b demonstrates an effect of the increase of κ or only of κ11 = κ22 on the
dynamics of z for α = 0.02 and k = 3 × 10−2. Curves in this figure demonstrate the
increase of z(t) as κ or only κ11 = κ22 grows.

Figure 3a depicts a dependence of z on the parameters α12 and α21. The decrease
of α12 increases z. The decrease of α21 decreases values of z(t).

The increase of α or decrease of α12 = α22 demonstrates on Fig. 3b the increase
of z.

The increase of parameters α, α12 = α22, or only α12 strongly influences dynamics
of θ1 and θ2 which tend to values independent of position x1 as well (see Fig. 4). This
behavior of θ1 and θ2 demonstrates a long-range diffusion effect as well.

1.2. The case of heterogeneous distribution of adsorption sites. We consider three
cases of active and inactive sites distribution where they are arranged in the form of
stripes of decreasing width:

Case I. s1 = 1, s2 = 0, if x1 ∈ [0, 1/2]; s1 = 0, s2 = 1, if x1 ∈
(1/2, 1];

Case II. s1 = 1, s2 = 0, if x1 ∈ [0, 1/4] ∪ [2/4, 3/4]; s1 = 0, s2 = 1,
if x1 ∈ (1/4, 2/4) ∪ (3/4, 1];
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Fig. 5 Effect of parameter α on
conversion rate of the reactant
molecules z(t) determined by
(1)–(3) and (5) in three cases
(I–III) of heterogeneous
distribution of sites and κ = 1.
Reaction rate constant:
a k = 3 × 10−3, b k = 3 × 10−2
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Case III. s1 = 1, s2 = 0, if x1 ∈ [0, 1/8] ∪ [2/8, 3/8] ∪ [4/8, 5/8] ∪
[6/8, 7/8];
s1 = 0, s2 = 1, if x1 ∈ (1/8, 2/8) ∪ (3/8, 4/8) ∪ (5/8, 6/8) ∪
(7/8, 1].

In all three cases
∫ 1

0 s1(x) dx = ∫ 1
0 s2(x) dx = 1/2 as well.

Figure 5 depicts the dependence of z on parameters k and α for three cases (I–III)
of the active and inactive sites distribution. We observe that function z grows as the
width of stripes decreases and achieves maximal values in the third case of the surface
arrangement. Function z also increases as α grows.

2. Numerical results of system (1)–(3).
This system was also solved for the same as above uniform homogeneous and het-

erogeneous distributions of sites. In the case where s1 = x1 and s2 = 1 − x1, the
dependence of z on parameters α, κ , or κ12 = κ22, κ11 = κ21 is depicted in Fig. 6a
for k = 3 × 10−3. This figure demonstrates a different behavior of z as κ12 = κ22
increases. We observe that values of z for every fixed t ∈ (0, t∗), t < t∗ ≈ 1100 s,
increase as κ12 = κ22 grows, while their behavior is vice versa if t > t∗.

Figure 6b depicts the comparison of z(t) determined for the non-uniform homo-
geneous and heterogeneous distribution of sites. This figure demonstrates a different
behavior of z determined for heterogeneous distribution of sites as α increases. Cal-
culations show that t∗ ≈ 230 s for k = 3 × 10−2. The decrease of the width of stripes
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Fig. 6 Dependence of
conversion rate of the reactant
molecules z(t) determined by
(1)–(3) and (5) on parameters α,
and κi j , i, j = 1, 2. a Reaction

rate constant k = 3 × 10−3,
densities s1(x1) = x1 and
s2(x1) = 1 − x1. b Reaction rate
constant k = 3 × 10−2, κ = 1.
Solid and dashed lines for
non-uniform homogeneous
distribution of sites (s1(x1)=x1,

s2(x1) = 1 − x1), symbols for
heterogeneous distribution of
sites (cases I and III)
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increases values of z. But these values practically coincide in the second and third
cases of the active and inactive sites arrangement.

Calculation of an influence of parameter α on the dynamics of the total
amount of reactant, Ia(t) := ∫ 1

0

∫ 1
0 a(t, x1, x2) dx1dx2, and product, Ib(t) :=

∫ 1
0

∫ 1
0 b(t, x1, x2) dx1dx2, for distribution of active and inactive sites considered above

shows that Ia practically does not depend on α. Dependence of Ib(t) on α demonstrates
a significant influence of α on Ib(t) only in the first case of heterogeneous distribution
of sites. In the second or third cases α practically does not influences Ib.

4 Conclusions

In this paper we studied theoretically the role of long-range surface diffusion of ad-
sorbed particles on the kinetics of unimolecular heterogeneous reactions catalyzed
by plane inhomogeneous surfaces. We studied a phenomenological model in two-
dimensional in space case which involves a reactant adsorption and its desorption,
long-range diffusion of the adsorbed particles on surfaces with different (non-uniform
homogeneous and heterogeneous) arrangement of reactive and non-reactive sites, and
an instantaneous product desorption from the adsorbent. The model also involves the
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bulk diffusion of the reactant from the bounded vessel towards the adsorbent and the
product bulk one from the adsorbent into the same vessel.

Inactive sites, due to the possibility of adsorption and surface diffusion of particles
on them, constitute an additional channel transporting reactant particles onto active
sites [14].

We demonstrated that surface diffusion rate constants κi j or dispersions of jumps
lengths αi j strongly influence the coverages θ1 and θ2 and turn-over rate z.

We found that:
In the case of non-uniform homogeneous distribution of sites, both coverages deter-

mined by system (1) with a given reactant concentration a|S2 tend to values independent
of position on the surface S2 as surface diffusion rate constants κi j or dispersions of
jumps lengths αi j increase.

In all cases of sites arrangement we considered as κi j or αi j increase, we demon-
strate a different behavior of z(t) determined by system (1)–(3) or system (1) with
given a|S2 .
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